Yes they are significant. Although the picture size got reduced, in my posted example, at the end of thermal step there is a 6% difference (34.6 vs 36.8 MPa), by the end of the mechanical step there is a 9% difference (368 vs 339 MPa), tried with other models too. It doesnt seem like a difference because of rounding or similar numerical issue, rather like a problem with the constitutive equation or simply because ABAQUS does not use this formulation, even if the documentation says so.
Im waiting for approval for the Yahoo mailing list.
The code:
[FONT=courier new]C********************************************************************
C*****************************************************************
C UMAT for elastic orthotropic material behaviour with thermal residual
C stress
C*****************************************************************
C********************************************************************
C
SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD,
1 RPL,DDSDDT,DRPLDE,DRPLDT,
2 STRAN,DSTRAN,TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED,CMNAME,
3 NDI,NSHR,NTENS,NSTATV,PROPS,NPROPS,COORDS,DROT,PNEWDT,
4 CELENT,DFGRD0,DFGRD1,NOEL,NPT,LAYER,KSPT,JSTEP,KINC)
C
INCLUDE ABA_PARAM.INC
C
CHARACTER*80 CMNAME
C
DIMENSION STRESS(NTENS),STATEV(NSTATV),
1 DDSDDE(NTENS,NTENS),DDSDDT(NTENS),DRPLDE(NTENS),
2 STRAN(NTENS),DSTRAN(NTENS),TIME(2),PREDEF(1),DPRED(1),
3 PROPS(NPROPS),COORDS(3),DROT(3,3),DFGRD0(3,3),DFGRD1(3,3),
4 JSTEP(4), Q(6,6), DTHERM(6)
C
C********************************************************************
C Initialisation
C********************************************************************
C
E1 = PROPS(1)
E2 = PROPS(2)
E3 = PROPS(3)
NU12 = PROPS(4)
NU13 = PROPS(5)
NU23 = PROPS(6)
G12 = PROPS(7)
G13 = PROPS(8)
G23 = PROPS(9)
ALPHA11 = PROPS(10)
ALPHA22 = PROPS(11)
ALPHA33 = PROPS(12)
C
NU21 = (E2/E1)*NU12
NU32 = (E3/E2)*NU23
NU31 = (E3/E1)*NU13
C
C********************************************************************
C Calculate Q matrix
C********************************************************************
C
QQ = 1.0D0/(1.0D0-
1 NU12*NU21-NU23*NU32-NU31*NU13-2.0D0*NU21*NU32*NU13)
C
Q(1,1) = E1*(1.0D0-NU23*NU32)*QQ
Q(2,2) = E2*(1.0D0-NU13*NU31)*QQ
Q(3,3) = E3*(1.0D0-NU12*NU21)*QQ
Q(4,4) = G12
Q(5,5) = G13
Q(6,6) = G23
Q(1,2) = E1*(NU21+NU31*NU23)*QQ
Q(1,3) = E1*(NU31+NU21*NU32)*QQ
Q(2,3) = E2*(NU32+NU12*NU31)*QQ
Q(1,4) = 0.0D0
Q(1,5) = 0.0D0
Q(1,6) = 0.0D0
Q(2,4) = 0.0D0
Q(2,5) = 0.0D0
Q(2,6) = 0.0D0
Q(3,4) = 0.0D0
Q(3,5) = 0.0D0
Q(3,6) = 0.0D0
Q(4,5) = 0.0D0
Q(4,6) = 0.0D0
Q(5,6) = 0.0D0
C
C********************************************************************
C Calculate thermal strain
C********************************************************************
C
DTHERM(1) = ALPHA11*DTEMP
DTHERM(2) = ALPHA22*DTEMP
DTHERM(3) = ALPHA33*DTEMP
DTHERM(4) = 0.0D0
DTHERM(5) = 0.0D0
DTHERM(6) = 0.0D0
C
C********************************************************************
C Calculate stress matrix
C********************************************************************
C
DO K1=1,NTENS
DO K2=1,NTENS
STRESS(K2) = STRESS(K2)+Q(K2,K1)*(DSTRAN(K2)-DTHERM(K2))
END DO
END DO
C
C********************************************************************
C Calculate stiffness matrix
C********************************************************************
C
DO K1=1,NTENS
DO K2=1,NTENS
DDSDDE(K2,K1) = 0.0D0
END DO
END DO
C
DO K1=1,NTENS
DO K2=1,NTENS
DDSDDE(K2,K1) = Q(K2,K1)
END DO
END DO
C
RETURN
END [/FONT]